MODELLIERUNG, SIMULATION UND VALIDIERUNG FÜR MELTBLOWN-PROZESSE

09.10.2023 – Hofer Vliesstofftage 2023

Dr. Walter Arne, Dr. Dietmar Hietel

Overview

Air Filter Media

Virtual Production

- Air Flow Simulation
- Filaments Simulation
- Measurements and Validation

Development of New Filter Media

Optimization of

- Filtration efficiency
- Energy requirements in operation
- Production cost
- Lifetime
- Recyclability
- Energy consumption important for CO₂ reduction
- Multi-criteria optimization
- Conflicting goals

Simulation Pipeline for a Spunblown Process

Airflow Simulation

- Simulation of airflow in Spunblown process
- Cylindrical air inlet nozzles need to be resolved
- Periodic 3D slice in cross-machine direction
- 8 rows of polymer spinning nozzles (+2 inactive nozzles)
- Simulated quantities:
 - Velocity
 - Temperature
 - Pressure
 - Turbulent quantities
- Using CFD software: Ansys Fluent[®]

Filament Simulation – Overview

- Software FIDYST by Fraunhofer ITWM
- Simulation of individual filaments in airflow
- Fully physics-based
- Quantities: velocity, temperature, diameter, tension, etc.
- Cooling and stretching through airflow
 - Transfer of heat and momentum
 - Turbulence is a key influence factor
- Input:
 - Process parameters
 - CFD simulation
 - Polymer material properties (rheology measurement)

Filament Simulation – Part 1: Stationary Spinning

- Stationary simulation
 - Fiber simulated as 1D curve (centerline, circular cross-section)
 - Nonlinear ODE system, boundary-value problem
- Viscous material behavior
- Directly below spinning nozzle (~30mm)
- High relative air speed, low filament speed
- Negligible horizontal movement
- Turbulence can be ignored
- Stretching of several orders of magnitude (~100x-500x)

Filament Simulation – Part 2: Instationary Stretching

- Instationary simulation
 - Nonlinear PDE system
- Visco-elastic material behavior
 - Asymptotic Upper-Convective Maxwell
- Additional stretching due to turbulence
- Final diameters can only be explained in instationary simulation

Meltblown Paradox – Explained by Simulation, Stretching Is Factor 10 Or Even More Than Theoreticly Possible by Maximum Air Speed

Results CFD Simulations, Comparison Different DCD

Velocity magnitude 2.0 5.0 10.0 20.0 50.0 200.0 1.0 DCD 300 mm 144-22

DCD 500 mm

133-22

Validation of Process Model Against Reference Samples

- Mean simulation 6.4 μm, mean measurements 6.5 μm
- Thicker fibers due to sticking, wider spread by missing surface tension

Validation of Further Samples

Domain	Avg. Fiber diameter / μm
Real sample	9.6 (-10%)
Simulated sample	10.7
Real sample	11.5 (-10%)
Simulated sample	12.3
Real sample	5.6 (+9%)
Simulated sample	5.1
Real sample	6.2 (-11%)
Simulated sample	7.0
Real sample	3.4 (+3%)
Simulated sample	3.3
Real sample	4.0 (-11%)
Simulated sample	4.5
	Domain Real sample Simulated sample Simulated sample Simulated sample Simulated sample Simulated sample Simulated sample Real sample Simulated sample Simulated sample

Fiber Simulation: Diameter Distribution Each Nozzle

Fiber Simulation: Diameter Distribution All Nozzles for Different DCD

DCD 500 mm

DCD 300 mm

Fiber Simulation: Diameter Distribution for Different Air Flow Amount

Fraunhofer

Fiber Simulation: Diameter Distribution for Different Air Flow Amount and Temperature

800 Nm³/h, 255 °C

600 Nm³/h, 280 °C

Conclusion

- Virtual production reduces development time, costs
- Simulation-Driven Design uses virtual twin to optimize complete production chain
- Simulations leads to deep understanding of the process
- Including of surface tension to get more precise diameter distribution
- Cooperations in public and industrial context possible

Acknowledgements

- Research Project: Virtual Produced Filter Media (ViProFil)
- Partners: MANN+HUMMEL GmbH, Fraunhofer Institute for Industrial Mathematics ITWM
- Funded by the German Federal Ministry of Economic Affairs and Energy (BMWi) in the framework of the 7th Energy Efficiency Research Program

Gefördert durch:

für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

