

Polyhydroxybutyrat - Etablierung eines biologisch abbaubaren Polymers im Meltblown

Dr. Tim Höhnemann, Dr. Thomas Helle

09.11.2023 – 36. Hofer Vliesstofftage

Mehrwert aus Reststoffen

Unser Ziel ist, aus Abfällen und Reststoffen einen Mehrwert zu schaffen und so den Weg für nachhaltigere Industrieprozesse zu ebnen. Wir skalieren Innovationen auf industrielle Größe.

RESEARCH & DEVELOPMENT & INNOVATION

Novis konzentriert sich auf die CO₂-Abscheidung und –verwertung mit einem innovativen Verfahren. Mit diesem kreislaufwirtschaftlichen Ansatz stellen wir PHB aus Licht und Abfall-CO₂ her.

Was sind Polyhydroxyalkanoate (PHAs)?

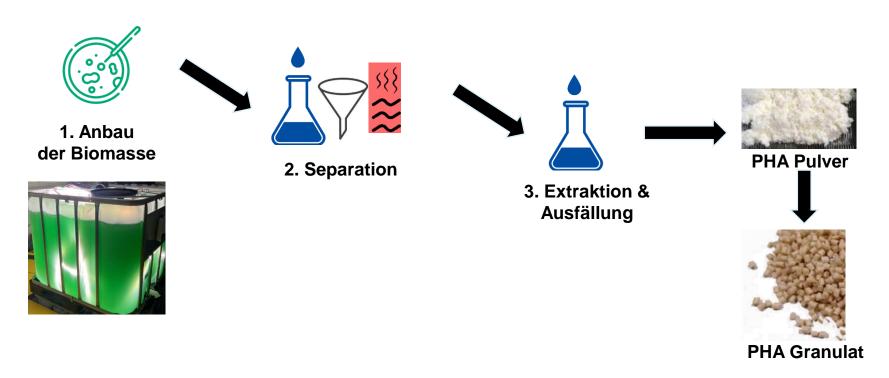
Natürlicher Polyester synthetisiert durch Bakterien / Archäen

(noch) teuer im Vergleich zu synthetischen Alternativen

Potential für einen signifikanten Beitrag zur Nachhaltigkeit

Nachhaltigkeitszertifiziert

Industrie- & Heimkompostierbar


Degradierbar in Meeres- und Frischwasser

Thermoplastisch verarbeitbar

PHAs: "Synthese"

PHAs: Struktur und Eigenschaften

$$\left(\begin{array}{c} R & O \\ O & (CH_2)_n \end{array} \right)_m$$

- über 150 Monomere bisher identifiziert
- die Polymerstruktur beeinflusst die Eigenschaften
- die Alkyl-Seitengruppe hat Einfluss auf die Kristallinität
 - Kurzkettige (Short side-chain; ssc-) PHAs: höhere Kristallinität, höhere Dichte, Sprödigkeit & Steifgikeit
 - Medium side-chain (msc-)PHAs: geringere Kristallinität, geringerer Schmelzpunkt, Dichte & höhere Duktilität

Marktverfügbarkeit:

v.a. P(3)HB & PHBV
 ~ 10 €/kg*

Hauptlimitationen:

Kristallinität

Temperaturstabilität

PHAs: Biobasiert & Biodegradierbar - Vergleich

Umgebung	Bedingungen	PHAs & Copolymere*	PLA	PBS	PBAT	PBSA	Lignín	Cellulose -acetat	Cellulose (Lignin <5%)
Meeres- Wasser	30 °C, 90% r.LF., < 6 Monate								
Frisch- Wasser	21 °C, 90% r.LF., <26 Tage								
Boden	25 °C, 90% r.LF., <2 Jahre								
Heim- Kompost	28 °C, 90% r.LF., < 12 Monate								
Anaerober Abbau	Kein Standard 52 °C od. 37 °C, 90% Abbau								
Industrieller Kompost	58 °C, 90% r.LF., <6 Monate								
Nachgewiesen		Nur bestimmte Typoder unter bestimm Bedingungen		Nich	t vorha	nden		3)HB, P(4)HB 3)HB(3)Hx,	s, P(3)HB(4)HB,

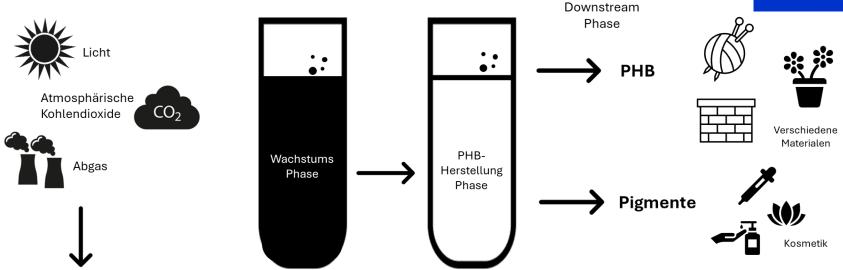
NOVISBioBased Technology

Polyhydroxybutyrat (PHB)

Status quo

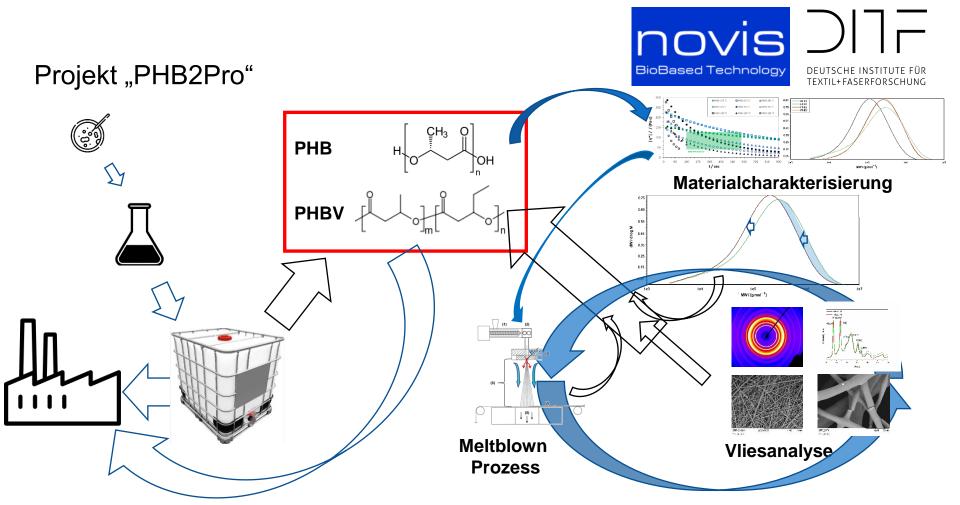
- Gewinnung über Bakterien
 - Z.B. Stamm Cupriavidus necator
 - Produzieren PHB auf Basis von Zucker (Zugabe von "landwirtschaftlichen Erzeugnissen") und Wärme
 - Ausbeuten bis zu 80%

Forschungsansatz

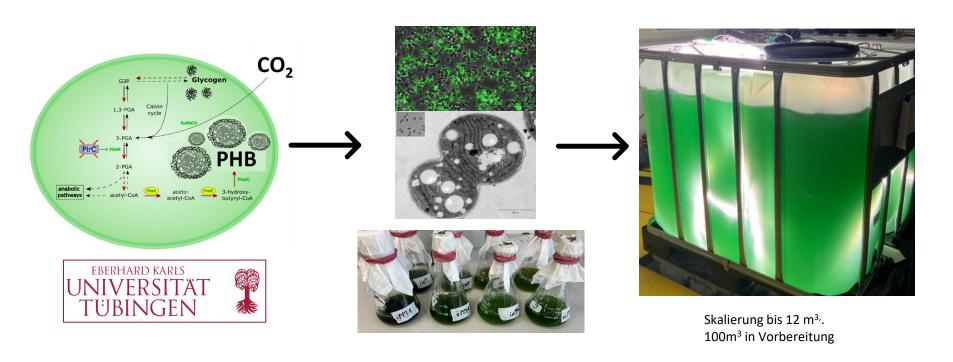

- Cyanobakterien (Mikroalgen)
 - Natürliche PHB-Ausbeuten generell bei nur 15%
 - Stamm Genmodifizierte Synechocystis sp. PCC 6803 (PPT1)
 - Produzieren PHB aus CO₂ mit Hilfe von Photosynthese
 - Umwandlung in PHB unter geeigneten Bedingungen
 - Produktivität bis 80%

Erfüllung eines wesentlichen Aspektes der Bioökonomie:

PHB Herstellung braucht wenig Land und keine Zucker.

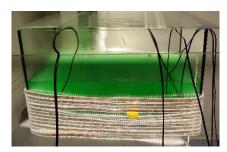

Unser PHB-Produktionsprozess

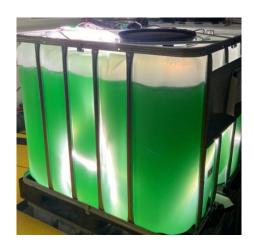
PPT1: unser neu entwickelter
Cyanobakterienstamm, der gentechnisch so verändert wurde, dass er hohe Mengen an PHB produziert.


Novis nutzt Abfall-CO₂ als Futterquelle für neu entwickelte **GVO-Cyanobakterien**. Der Stamm, den wir verwenden, heißt **PPT1** und wurde von der Gruppe von Prof. Forchhammer an der Universität Tübingen entwickelt. Dieser neu entwickelte Stamm ist so programmiert, dass er **80% CDW von PHB produziert**. Dieses Ergebnis ist das höchste, das jemals bei einem Cyanobakterium erreicht wurde. Novis wird diesen Produktionsprozess weiterentwickeln und skalieren, um in naher Zukunft die **industrielle Vermarktung** zu erreichen.

PHB2Pro – Skalierung bei Novis

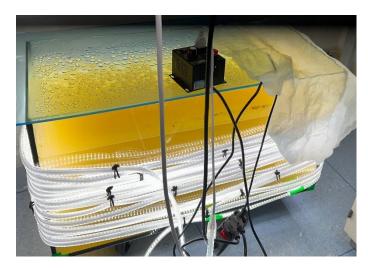
Unser Ziel: ein innovatives, kostengünstiges und stabiles System zur Herstellung von PHB.

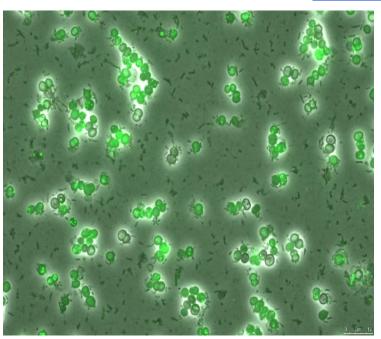

PHB2Pro – Aufskalierung bei Novis


Unser Ziel: ein **innovatives**, **kostengünstiges** und **stabiles** System zur Herstellung von PHB.

Skalierung 20L.

Skalierung 100L.


Skalierung 1000L.


Skalierung 12m³.

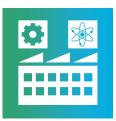
PHB2Pro – PHB-Synthese

90L unserer Zellen in Chlorose, der PHBproduzierenden Phase.

In Grün, intrazelluläres PHB, gefärbt.

Europas größte Textilforschungseinrichtung

KENNDATEN 2022



Beschäftigte ca. **220**

12 Mio € öffentlich **13** Mio. € Industrie

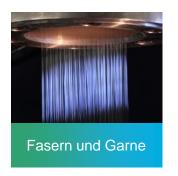
Umsatz

Fläche 25.000 m²

Forschung 189 öffentlich **572** Industrie

Partner

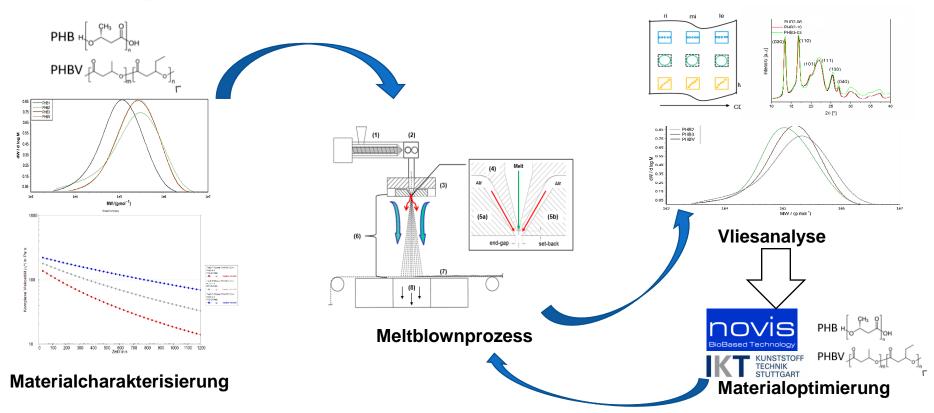
67 % KMU


Services 1158 Unternehmen ca.100 Prüfkunden **5** Kleinserien



Textile Vollstufigkeit

VOM MOLEKÜL ZUM PRODUKT



DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

Screening kommerzieller PHBs

Screening kommerzieller PHBs

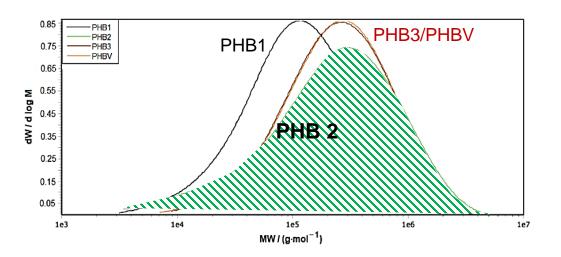
	Hersteller	Produkt	Dichte / (g/cm³)	Kristallit- Schmelzetemperatur / °C	MFI (180 °C, 2.16 kg) / (g [/] 10min)	Anwendung
PHB-1	Mirell F1006	Telles LLC	1,30	160 – 165	-	Sptizguss / FDA*
PHB-2	P316	Biomer®	1,20	-	10	
PHB-3	Enmat Y3000P	TianAn Biopolymer	1,20	175 – 180	10 – 25	Extrusion / Thermoformen
PHBV	Enmat Y1000P	TianAn Biopolymer	1,20	175 – 180	10 – 25	Extrusion / Thermoformen

Verarbeitbarkeit?

Materialanalyse:

- TGA
- DSC
- Rheologie

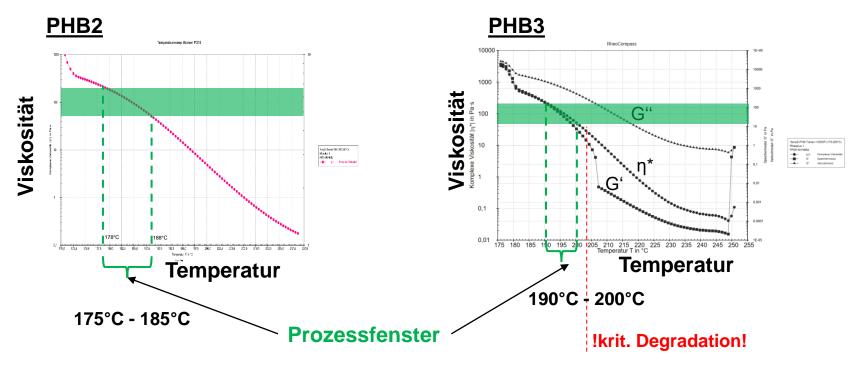
- GPC


Vliescharakterisierung:

- Flächengewicht, Dicke
- Faserdurchmesserverteilung (REM)
- Zugprüfung MD/CD
- Abbau im Prozess (GPC, Rheologie)

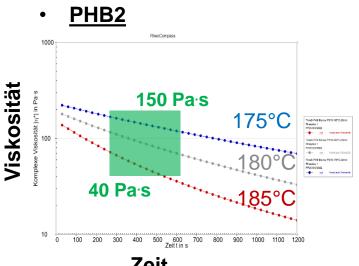
Materialcharakterisierung

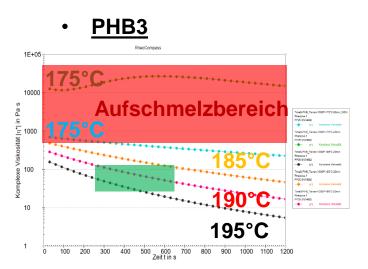
GPC: Molmassenverteilung



	M _n [g/mol]	M _w [g/mol]	Ø
PHB1	53.600	189.300	3,5
PHB2	78.300	666.600	8,5
PHB3	113.300	499.500	4,4
PHBV	131.800	489.700	4,8

DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG


Materialcharakterisierung


Rheologische Charakterisierung

TEXTIL+ FASERFORSCHUNG

Rheologische Charakterisierung: Prozessfenster für Meltblow

Zeit

Material: PHB-1 **PHBV** PHB-2 PHB-3 MFI / (g·10min⁻¹)¹: 334 74 385 88

→ deutlich stärkere Degradation

→ höhere Prozesstemperatur notwendig

 ${}^{1}T = 190 \, {}^{\circ}C$, 2.16 kg

Meltblown - Prozesscharakterisierung

	PHB1	PHB2	РНВ3	PHBV
T _{min} / °C:	175	180	185	195
$\eta_0 \left(T_{min} \right) / \left(Pa \cdot s \right)$	153	179	287	227
$\eta_{300\text{sek}} \left(T_{\text{min}} \right) / \left(\text{Pa·s} \right)$	127	110	113	49
DCD / mm:	500*	500*	500*	500*
DS / (g/Lo/min): / (kg/h):	> 0.1	x100 DCD	= 500	5* 5 4**
\dot{V}_L / (Nm ³ /h):	220*	20		0**
DITF_6520	x100 1 mm	DITE-21-1493	2021 03:03	¥100 1 mm

Prozessparameter:

- Prozesstemperatur (T)
- Abstand Spinndüse-Kollektor (DCD)
- Polymer-Durchsatz (DS)
- Prozessluftdurchatz (\dot{V}_L)
- Prozesslufttemperatur (T_L)
- *= Maximalwert (Anlagens pezitisch) dgeschwindigkeit
- *Prozessaruckamit (50 bar)
- **Prozess instationär (Druckabfall durch Degradation
- Düse: 561 Loch 0,3mm, L/D = 6
- ** <: Schmelzeanhaftung an Düse

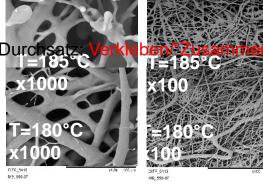
Prozess stabil, Maccassoc.en nach & zerbröckeln nach dem Aufwickeln!

MB 562-08

Meltblown – Prozesscharakterisierung – PHB Biomer P316

- Ermittelte Prozesstemperatur der Schmelze: 180 °C
- T < 180 °C: geringes Verkleben / "Zusammenlaufen" der Fasern, stärkere Sprödigkeit

T=175°C
x1000


T=175°C
x1000

T=175°C
x1000

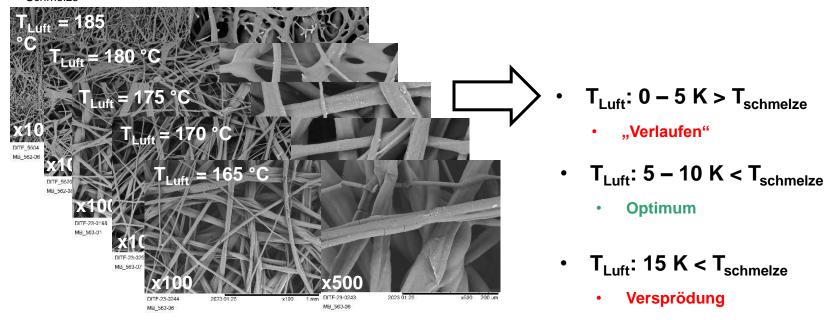
keine kontinuierliche Faserbildung

• T > 180°C: starkes Verkleben/"Zusammenlaufen" der Fasern + Anhaftungen auf dem Ablageband

T = 180 °C + geringer Durchsat

ufen" der Fasern

T = 180 °C + hoher Durchsatz:


moderates Verkleben/"Zusammenlaufen" der Fasern

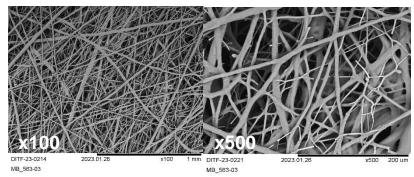
DEUTSCHE INSTITUTE FÜR TEXTIL+ FASERFORSCHUNG

Meltblown – Prozesscharakterisierung

Einfluss der Lufttemperatur:

• T_{Schmelze}: 180 °C

DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

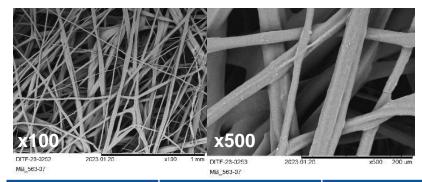

Meltblown – Vliescharakterisierung

T_{Schmelze}: 180 °C / T_{Luft}: 175 °C

• DCD: 500mm

• Durchsatz: 0.39 g/Loch/min

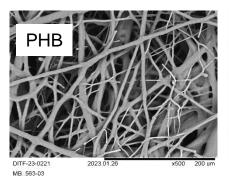
Luftmenge: 275 Nm³/h

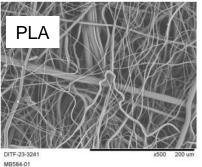

Faserdurc	Mittelw.	Luftdurchlässigkeit	E-Modul
Median		(200 Pa, 10 cm²]	(MD)
[µm		[l/m²/s]	[N/mm²]
2,6	6,5	470	129

• T_{Schmelze}: 180 °C / T_{Luft}: 165 °C

• DCD: 500mm

• Durchsatz: 0.77 g/Loch/min


Luftmenge: 220 Nm³/h

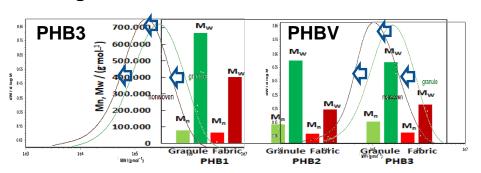


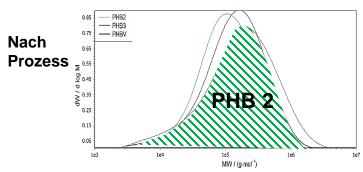
Faserdurchmesser		Luftdurchlässigkeit	E-Modul
Median Mittelw.		(200 Pa, 10 cm²]	(MD)
[µm]		[l/m²/s]	[N/mm²]
17,1	19,6	5730	36

PHB-Meltblown – Vergleich zu Standard-Polymeren

Polymer	Kristallit- Schmelztem-	Prozess Temperatur	Faserdurch messer	Faserdurch- messer	Luftdurchlässigkeit* (200 Pa, 10 cm²)
	peratur [°C]	Polymer/Luft [°C]	(Median) [µm]	(Mittelw.) [µm]	[l/m²/s²]
РНВ	170	180 / 175	2,6	5,0	470
PLA	170	245 / 260	1,4	1,6	160
PP	150	260 / 300	0,7	1,1	140

*100 g/m²




PHB-Meltblown – Abbauverhalten

Molmassenverteilung

Vor Prozess: ≥ 0.55 0.25 0.15 0.05 MW / (g·mol⁻¹)

Vergleich vor/nach Prozess:

Breite Molmasenverteilung:

- nur hohe Molmassenanteile degradieren stabiler Prozess bei tieferer Temperatur

DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

PHB2Pro: Zusammenfassung

- Synthese von PHB über Synechocystis sp. PCC 6803
 - o Produktion von PHB im 12 m³-Maßstab
 - Vgl. zur PHB-Gewinnung über Bakterien: identische Ausbeute (8%)
 im Labor dargestellt
- Nächster Skalierungsschritt:
 - Produktion von PHB im 100 m³-Maßstab
- Screening industrieller PHB-Typen auf Materialeigenschaften
 - deutliche Unterscheide trotz "Typengleichheit" (Spritzguss)
- Verarbeitung industrieller PHB-Typen im Meltlbow-Verfahren
 - o Identifizierung von Prozessfenstern über vorherige Materialanalyse
 - o Herstellung von Vliesen mit feineren Faserdurchmessern* erfolgreich
 - Gegenüber Standard-Polymeren: Degradation im Prozess vorherrschend
 - → Identifizierung idealer Material"voraussetzungen" für PHB-Meltblow

*Fortschritt im Vergleich zum aktuellen Publikationstand

Bioabbaubarer Kunststoff für Produktentwicklung (PHB2Pro)

BWIN330173 (Ministerium für Ernährung, Länflichen Raum und Verbraucherschutz Baden-Württemberg)

Die Zukunft ist Textil

PHB2Pro: Fertigung von 3-dimensionalen Strukturen online im Meltblow-Prozess

	10/A	
3		

		"Baumarkt"- Topf	Hanffasertopf	PHB Tianan	PHB Biomer
Hel	Flächengewicht / gsm	300	475	150	150
	Dicke / mm	1500	3000	600	600
	E-Modul / (N/mm²)	74	50	62	75
	Luftdurchlässigkeit / (I/m²/s)	27	114	2010	1060
	Wasserrückhalt* / %	0	0	100	100