

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

LAVA - Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme

Dr. rer. nat. Steffen Seeger, Sächsisches Textilforschungsinstitut e.V.

36. Hofer Vliesstofftage, Hof/Deutschland, 08.-09. November 2023

Seeger (2023): LAVA - Labor- und Anlagendaten: 36. Hofer Vliesstofftage

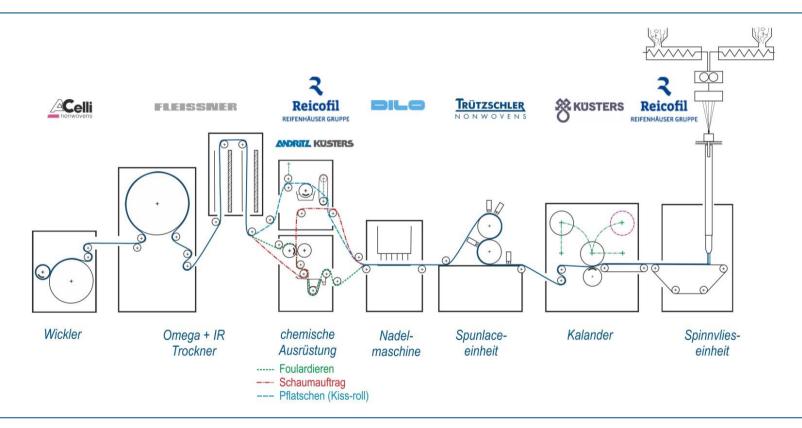
Sächsisches Textilforschungsinstitut e.V.

Forschung & Entwicklung

Prüfung & Zertifizierung

Lehre & Ausbildung

Transfer



Seeger (2023): LAVA - Labor- und Anlagendaten; 36. Hofer Vliesstofftage

Spunbond line Recofil 4.5 am STFI

Seeger (2023): LAVA - Labor- und Anlagendaten; 36. Hofer Vliesstofftage

LAVA – Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme **Motivation**

Digitalisierung muss gemeinsam gestaltet werden.

- Wertschöpfungspotenziale:
 - Schnellere Produkteinführung
 - Verbesserte Prozesse
 - Optimierte Ausbeuten
 - Minimierte Invest-Risiken
 - Verbesserte Anlagensicherheit
- Smartes Equipment
 - Formale Modelle (Digitale Zwillinge)
 - Erweiterte Sensorik
 - Kommunikation mit allen Ebenen der Betriebs- und Prozessführung
 - Automatisierte Wirkketten

Kockmann, et al. (2018), CITplus 2018(7-8):6-8 Stenger et al. (2018), CITplus 2018(10):6-8

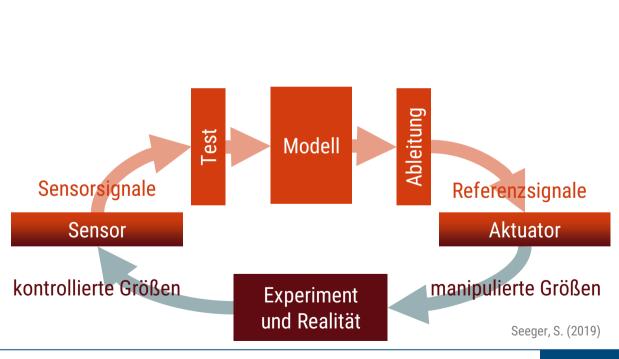


LAVA – Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme **Motivation**

Seeger (2023): LAVA - Labor- und Anlagendaten; 36. Hofer Vliesstofftage

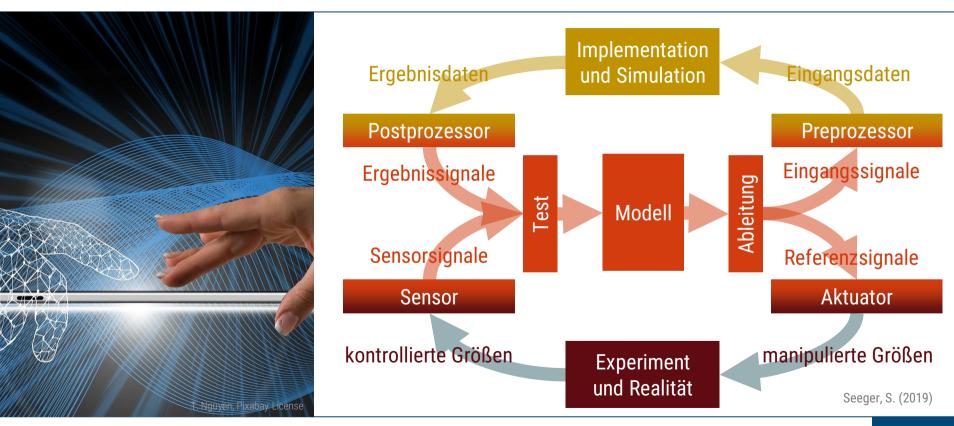
Digitalisierung muss gemeinsam gestaltet werden.

- Digitaler Zwilling:
 - Digitale Ergänzung zum physischen Zwilling für Zwecke der Simulation, Integration, Testung, Überwachung, Wartung, ...)
 - Bündelt aktuelle, umfassende und verifizierte Information (Wissen) über physische Objekte
 - Fundament der Digitalisierung für die Prozessindustrie
 - Grundlage sind Modelle von Prozess-, Apparate- oder Anlagentechnik



Kockmann, et al. (2018), CITplus 2018(7-8):6-8 Stenger et al. (2018), CITplus 2018(10):6-8

LAVA – Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme Modellbildung



08.11.2023

LAVA – Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme Modellbildung

LAVA – Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme Datensätze für die Modellbildung

f: {Material, Prozess} \rightarrow Produkt

Materialparameter

- Polymertyp (PP, PE, PLA, ...)
- Schmelzpunkt
- Schmelzdichte
- Schmelzflussrate
- Restfeuchte
- Additive
- ...

Prozessparameter

- Verarbeitungstemperatur
- Volumenströme
- Verstreckung
- Siebbandgeschwindigkeit
- Verfestigung
- Veredlung/Ausrüstung

Seeger (2023): LAVA - Labor- und Anlagendaten; 36. Hofer Vliesstofftage

• ..

Produktparameter

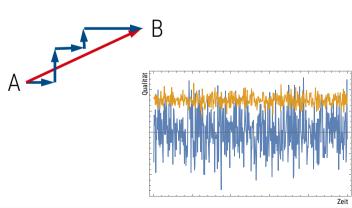
- Zugfestigkeit
- Filamentfeinheit
- Flächenmasse
- Luftdurchlässigkeit
- Dicke
- ...

LAVA – Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme Automatisierte Modellbildung und optimale Versuchsplanung

- Versuchsreihen im Full-Factorial Design nur sinnvoll für kleine Wertespektren und kostengünstige Versuchsdurchführung
- Stand der Technik: Statistische Versuchsplanung
 - Grundlage: möglichst vorhandenes Modell und Schätzung erwarteter Parameterwerte

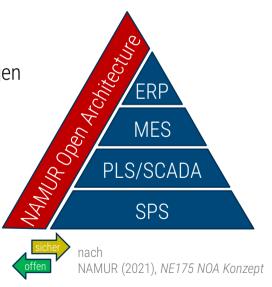
Seeger (2023): LAVA - Labor- und Anlagendaten; 36. Hofer Vliesstofftage

- Wie viele und welche Experimente sind notwendig?
- → Reduzierter experimenteller Aufwand, möglichst hoher Informationsgehalt
- neuartiger Ansatz:
 - Automatisierte, datengetriebene Modellbildung
 - Versuchsplanung zur Bestimmung von Experimenten, die optimalen Erkenntnisgewinn bewirken


Vanaret et al. (2021), Comp. Chem. Eng. 146(3):107218, Babutzka et al. (2019), Chem. Ing. Tech. 91(3):277-284, Seufert et al. (2021), Process 9:508, Li et al. (2017), Scientific Reports 7:5683, Asprion et al. (2021), Front, Chem. Sci. Eng.,

Two-phase approaches to optimal model-based design of experiments: how many experiments and which ones? Machine Learning Supporting Experimental Design for Product Development in the Lab. Model-based Design of Experiments for High-Dimensional Inputs Supported by Machine-Learning Methods. Rapid Bayesian optimization for synthesis of short polymer fiber materials. Decision Support for the development, simulation and optimization of dynamic process models.

LAVA – Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme Automatisierte Modellbildung und Assistenzsysteme


- Wertschöpfungspotenziale
 - Abweichungen im Prozess frühzeitig erkennen
 - Automatisierte Vorschläge für Prozessänderungen
 - Ungewöhnliche Konfigurationen erkennen
 - Vorausschauende, bedarfsgerechte Wartung (Predicitive Maintenance)
- Neue Möglichkeiten für Assistenzsysteme mit datengetriebenen Modellen:
 - Vorschläge für optimale Arbeitspunkte
 - Unterstützung bei der Einschätzung, ob stationärer Betrieb (Arbeitspunkt) erreicht
 - Pareto-Optimierung
 (z.B. geringer Ressourcenverbrauch bei ausreichender Produktqualität)

LAVA – Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme Maschinelle Verarbeitung von Anlagendaten (Prozessparameter)

- Erweiterung der Reicofil 4.5 Anlage des STFI in Anlehnung an das NAMUR Open Architecture (NOA) Konzept
- Digitaler Retrofit:
 - Welche Prozessgrößen sollen kontrolliert/manipuliert werden? (Analyse, Bewertung, Umsetzung)
 - Digitalisierung analoger Sensorik und Aktorik, ggf. Erweiterungen
 - Reifenhäuser c. Hub als anlagenspezifische M+O-Komponente in Anlehnung an NAMUR Open Architecture
 - Digitale optische Prozessüberwachung und -kontrolle
- Anpassung IT-Infrastruktur
 - Speicher, Rechenleistung, Netzwerk
 - Anforderungen bzgl. IT-Sicherheit

LAVA – Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme Maschinelle Verarbeitung von Labordaten (Material- und Produktparameter)

- Typische Zielstellungen:
 - Charakterisierung (FuE)
 - Qualitätssicherung (Produktion)
- Stand der Technik: LIMS (Labor-Informationsmanagement-Systeme)
 - Messwerterfassung in Datenbank
 - Auswertung für spezifische Aufgabe(n)
 - → hoher Aufwand für Nachnutzung
- Ansatz: Speicherung nach FAIR-Prinzip (Findable, Accessible, Interoperable, Reusable)
 - Durchsuchbare Metadaten
 - Offene, frei nutzbare Protokolle

- Besonderheiten Produktion:
 - Produktparameter vorgegeben
 - Materialparameter schwankend
 - Anlagenparameter nachführbar
- Besonderheiten FuE/Pilotanlage:
 - Schnelle Charakterisierung gewünscht
 - Größerer Parameterbereich
- Möglichkeiten zur Automation?
 - Datenschnittstellen
 - Softwaresysteme f
 ür Auswertung
 - Ablaufsteuerung (BPMN?)
 - Datenformate/Protokolle (SILA, AnIML)

LAVA – Labor- und Anlagendaten für Versuchsplanung und Assistenzsysteme Umsetzung am STFI

LAVA – Labor und Anlagendaten für Versuchsplanung und Assistenzsysteme INNO-KOM 49VF210048 Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Impressum

6 - 7 Dezember 2023 Chemnitz

Name: Dr. rer. nat. Steffen Seeger Funktion: wissenschaftlicher Mitarbeiter

F-Mail: steffen.seeger@stfi.de Tel· +49 371 5274 - 258

Sächsisches Textilforschungsinstitut e.V. (STFI)

An-Institut der Technischen Universität Chemnitz

Annaberger Straße 240 09125 Chemnitz

Vorstandsvorsitzender:

Dipl.-Ing.-Ök. Andreas Berthel

Geschäftsführender Direktor: Dr. Heike Illing-Günther

Internet: www.stfi.de

Follow us

Der Inhalt dieser Präsentation gehört dem Sächsischen Textilforschungsinstitut e.V. (STFI). Das STFI übernimmt keine Verantwortung oder Haftung für eventuelle Schäden, die aus der Weitergabe und/oder Nutzung der Informationen aus dieser Präsentation entstehen. Das unerlaubte Kopieren oder Veröffentlichen des Inhaltes dieser Präsentation verstößt gegen das Urheberrecht.

15