Rundvernadelung – ein neuartiger Ansatz zur Herstellung von Carbonfaser-Preformen für C/C-Verbundwerkstoffe

<u>Gwendolyn Wild</u>¹, Andreas Hiederer¹, Matthias Krödel², David Mayrhofer² Alexandra Luft¹, Felix Meier³, Frank Ficker¹

1- Hochschule Hof University of Applied Science, Germany

2- ECM -Engineered Ceramic Materials GmbH, Germany

3- Fraunhofer HTL - Anwendungszentrum Textile Faserkeramiken TFK, Germany

ifm
Institut für
Materialwissenschaften
der Hochschule Hof

Agenda

Hochschule Hof	03
Kurzvorstellung ifm und TFK	04
Eckdaten zum Forschungsprojekt RuRoRa	05
Ziele und Anforderungen	06
Arbeitsteilung	07
Projektablauf	08
Auswahl der Preform-Materialien	11
Rundvernadelung	13
Preform- und Prozessoptimierung	17
Prozessroute	20
Charakterisierung der Rohre	23
Vergleich der erreichten Ergebnisse	26
Ausblick	27

Hochschule Hof University of Applied Sciences

Standort Hof

Standort Münchberg

Standort Kronach

Lernort Selb

- 1994 Gründung
- 4 Standorte
- 5 Fakultäten
- über 43 Bachelor- und Masterstudiengänge
- Rund 4.000 Studierende*
- Verhältnis Professoren/Studierende rund1:30
- textile Ausbildung in Münchberg seit
 1854, Studiengänge Innovative Textilien
 und Textildesign (B.) und Sustainable
 Textiles (M.)

*WS 2023

Fraunhofer-Zentrum für
HochtemperaturLeichtbau HTL
Anwendungszentrum
Textile Faserkeramiken
TFK

Institut für
Materialwissenschaften
der
Hochschule Hof

Gründung:	2014	Gründung:	2011
Leitung:	Prof. Dr. F. Ficker	Leitung:	Prof. Dr. F. Ficker
Stellv. Leitung:	DI S. Grosch	Geschäftsführer:	Dr. E. Putzke

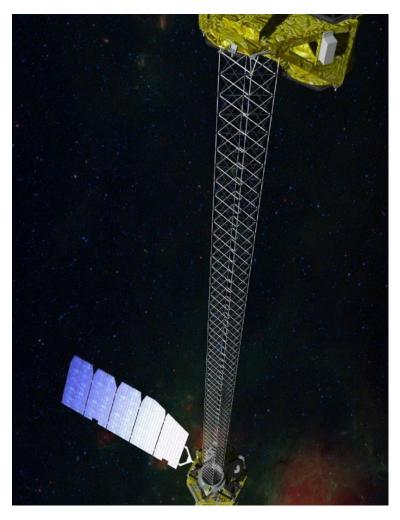
- Bündelung der Forschungskapazitäten der Fakultät Ingenieurwissenschaften
- Nutzung der Fachkompetenzen für industrienahe Forschung in enger Zusammenarbeit mit Unternehmen
- Entwicklung innovativer, nachhaltiger Produkte und Prozesse
- Fokus liegt auf der Entwicklung moderner Funktionswerkstoffe
- Stehen verschiedene Technika und Labore zur Verfügung

Eckdaten zum Forschungsprojekt RuRoRa

Entwicklung von **Ru**ndvernadelten C/C-SiC-**Ro**hrstrukturen für die **Ra**umfahrt

Projektpartner:

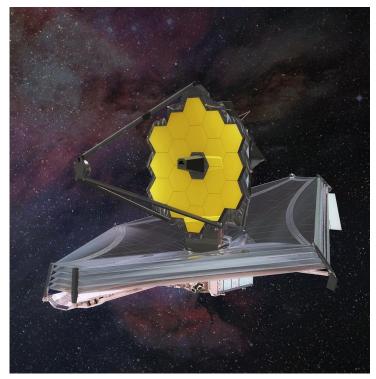
ifm Materialwissenschaften der Hochschule Hof



Förderträger: AiF Projekt GmbH

FuE Kooperationsprojekte des ZIM

Wir danken der AiF Projekt GmbH für die Förderung des Projektes "RuRoRa", als auch unseren Projektpartnern, der Engineered Ceramic Materials GmbH und dem Fraunhofer ISC, für die freundliche Zusammenarbeit.


Röntgenteleskop NuSTAR

Ziele und Anforderungen

- Bisher: Gestänge aus gewickelten Rohrprofilen → Delamination der Wickellagen, niedrige Torsionssteifigkeit und Zugfestigkeit
- Niedrige Wärmeausdehnung in radialer Richtung: begrenzende Geometrie durch bspw. Bohrungen zum Verbinden des Gestänges
- Mechanische Verbesserung der Rohrstruktur für mehr Stabilität
- Gewichtsreduktion → Dünnere und leichtere Komponenten

Wärmeausdehnung	2 – 2,5 x 10 ⁻⁶ K ⁻¹					
Zugfestigkeit	200 MPa					
Faservolumengehalt	< 50 %					
Gestänge-Länge	750 mm					
Gestänge-Durchmesser	20 – 40 mm					
Wandstärke	3 – 10 mm					
Wärmeleitfähigkeit	so hoch wie möglich					

James Webb Space Telescope, ©ESA/Hubble

Arbeitsteilung

- Beeinflussung Infiltrationsverhalten durch Vlieszusammensetzung und -aufbau
- Charakterisierung
 Infiltrationsergebnisse

FhG-TFK (assoz. Partner) Prozessentwicklung für
 Vliesbänder

- Infiltration
- Carbonisierung
- Silizierung
- Bauteilcharakterisierung

ECM Schule IFM

- Rundvernadeln von Bändern aus Vlies, Gewebe, Gelege
- Faserbeschichtung

Unterauftrag: Faserschutzbeschichtung

Projektablauf

AP-Nr.	Bezeichnung des Arbeitspakets	Beteiligter Partner
1	Projekt-Recherchen	HS
2	Festlegung der detaillierten Anforderungsprofile und des Demonstrators	ECM
3	Entwicklung des Vliesaufbaus	HTL
4	Entwicklung des Prozesses zur Erzeugung der Vliespreformen	HS
5	Entwicklung der Maschinentechnologie zur Vernadelung tubularer Preformen	HS
6	Erarbeitung des Prozesses für Schutzbeschichtung	HS
7	Erarbeitung des Prozesses für die Matrixherstellung (Harzinfiltration)	ECM
8	Erarbeitung des Prozesses für die Pyrolyse	ECM
9	Erarbeitung des Prozesses für die Silizierung	ECM

Projektablauf

AP-Nr.	Bezeichnung des Arbeitspakets	Beteiligter Partner
10	Optimierung der Prozessführung auf Basis der Versuchsresultate	ECM
11	Wissenschaftliche Unterstützung der Prozessoptimierung für Pyrolyse und Silizierung	HTL
12	Anwendungstechnische Charakterisierung der Muster	ECM
13	Demonstratorherstellung und Prüfung	ECM
	Abstimmung, Projektmanagement und Dokumentation	ECM+HS+HTL

Arbe	eitsplan RuRoRa																		MS1		MS2													MS3			
AP-Nr.	beteiligte Partner	20 04	20 05	20 06	20 07	20 08	20 09	20 10	20 11	20 12	21 01	21 02	21 03	21 04	21 05	21 06	21 07	21 08	21 09	21 10	21 11	21 12	22 01	22 02	22 03	22 04	22 05	22 06	22 07	22 08	22 09	22 10	22 11	22 12	23 01	23 02	23 03
1	Lead HS																																				
2	Lead ECM																																				
3	Lead HTL																																				
4	Lead HS																																				
5	Lead HS																																				
6	Lead HS																																				
7	Lead ECM																																				
8	Lead ECM																																				
9	Lead ECM																																				
10	Lead ECM																																				
11	Lead HTL																																				
12	Lead ECM																																				
13	Lead ECM																																				
	ECM + HS + HTL + TE																																				

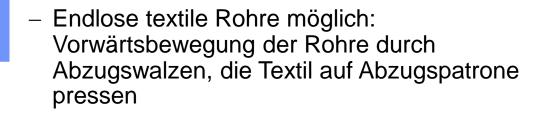
	MS	Meilensteine
	1	Herstellung der textilen Preform durch Rundvernadelung
	2	Erfolgreiche Harzinfusion der Preform unter Berücksichtigung der Formstabilität
Institut für Mater	3 alwissenschaf	Herstellung eines infiltrierten Bauteils (Demonstrators)

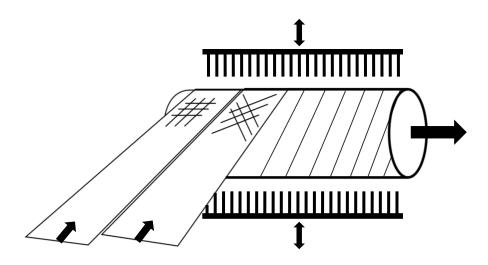
Auswahl von Preform-Materialien auf Grundlage von Flachvernadeln

- Zunächst Ermittlung wichtiger
 Spezifikationsanforderungen und Maschinenparameter
- Umfangsreiche Versuchsreihen zur Entwicklung geeigneter Preformen und deren Aufbau durch Vernadelung von Flachproben auf Basis der Spezifikationen
- Herstellen der Flachproben auf gleicher Weise wie endgültige Preformen
- Prüfung der prozessierten Flachproben

Prüfkörper von flachvernadelten C/C-SiC-Platten

DILO Rontex S 4000 Rundvernadelungsanlage beim IFM


Rundvernadelungsanlage Rontex an der Hochschule Hof


- Vernadelungsprinzip "Rontex", von Richard Dilo patentiert
- Rundvernadelungsanlage zur Herstellung von runden, dreidimensionalen Rohrstrukturen
- Durchmesser von 10-400 mm aus textiler Bandware möglich (ifm: 27, 150 und 400 mm)
- Einsatz von Carbonfaser (HS Hof), Glas, Keramik,
 Basalt und allen Arten von Synthese- und Naturfasern
- Verwendung von textilen Halbzeugen in Bandform (Vliese, Gewebe, Gelege ...)
- Wandstärken bis zu 20 mm



Rundvernadelungsprinzip

- Textile Bänder laufen seitlich auf perforierten Stichdorn auf
 - Vernadelung von oben und unten
- Umlenkung von Fasern in radialer Richtung (z-Verstärkung)
 - Steigerung interlaminare Scherfestigkeit bzw. Trennfestigkeit

Vernadelungszone, Foto: ifm

Rundvernadelung – Materialien

- PES-Vlies:

+ Sehr gut für Vorversuche, Einstellung der Parameter

– CF-Vlies:

- + Isotroper Charakter
- Hält Verzug während Vernadeln nicht stand

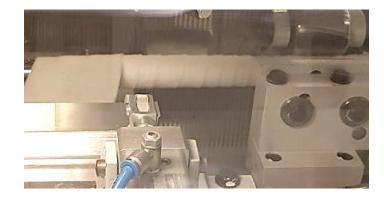
- + Mit Verstärkung lässt sich CF-Vlies vernadeln
- Keine Faserausrichtung, Innendurchmesser zu hoch, Dichte und FVG zu gering

CF-Band (NCF)

- + Reines CF-Material mit Faserorientierung
- Niedrigere Lagenhaftung, Faltenbildung, Faserschädigung

Rundvernadeltes PES-Vlies, Foto: ifm

Rundvernadeltes Maliwatt-Vlies, Foto: ifm



Rundvernadeltes NCF-Band, Foto: ifm

Rundvernadelung – Projekterkenntnisse beim Einsatz von T700-Fasern

- PES verdichtet sich beim Vernadeln
 - Innendurchmesser nimmt ab
- T700-CF-Material: Verdichtet sich deutlich weniger
 - Innendurchmesser ändert sich kaum → muss mit hoher Spannung um Dorn gewickelt werden
- Schwierig, reines CF-Vlies zu vernadeln
- Textile Zugfestigkeit des Ausgangmaterials auschlaggebend für Erfolg der Vernadelung
- Spezielle Materialien, z.B. CF-Vlies "Maliwatt"-Verfestigung (PES-Faserverstärkung in Längsrichtung), NCF lassen sich gut vernadeln

Oben: Vernadelung von PES-Vlies,

unten: Vernadelung von Carbon-Maliwatt, Bilder: ifm

Optimierung der Rontex

- Ersetzen der geriffelten und garnierten Abzugswalzen
 - Einsatz von gummierten Walzen
 - Schonen der Faseroberfläche
 - Besserer Antrieb
 - Nachteil: starke Abnutzung der Walzenoberfläche
- Tausch des konischen Stichdorns mit zylindrischen
 - Geringerer Außendurchmesser
 - Höhere Preformdichte und FVG
 - Minimieren der Falten

konisch

zylindrisch

Oben: konischer Dorn

unten: zylindrischer Dorn, Foto: ifm

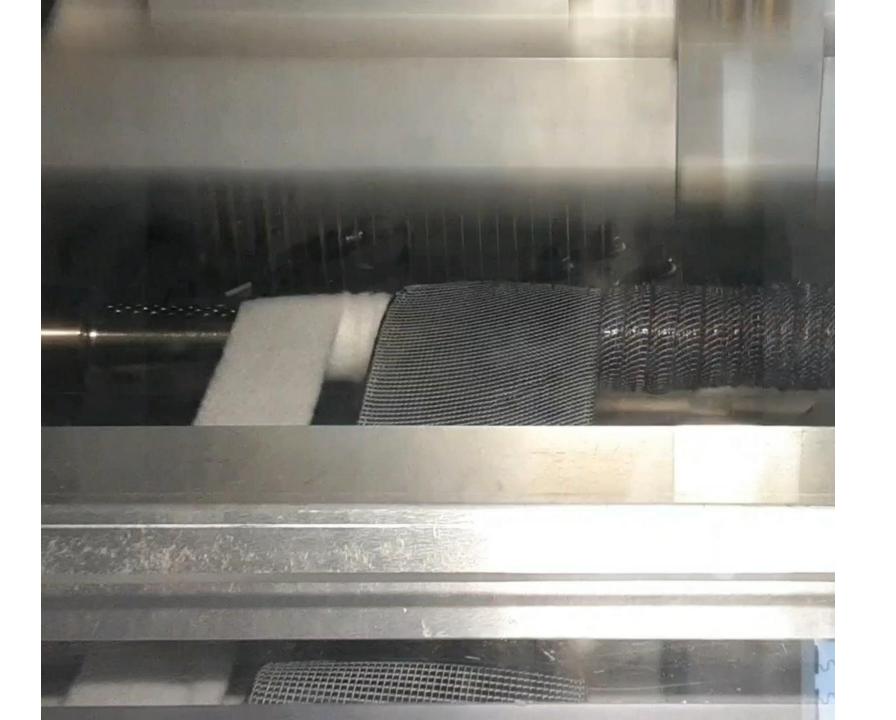
konisch

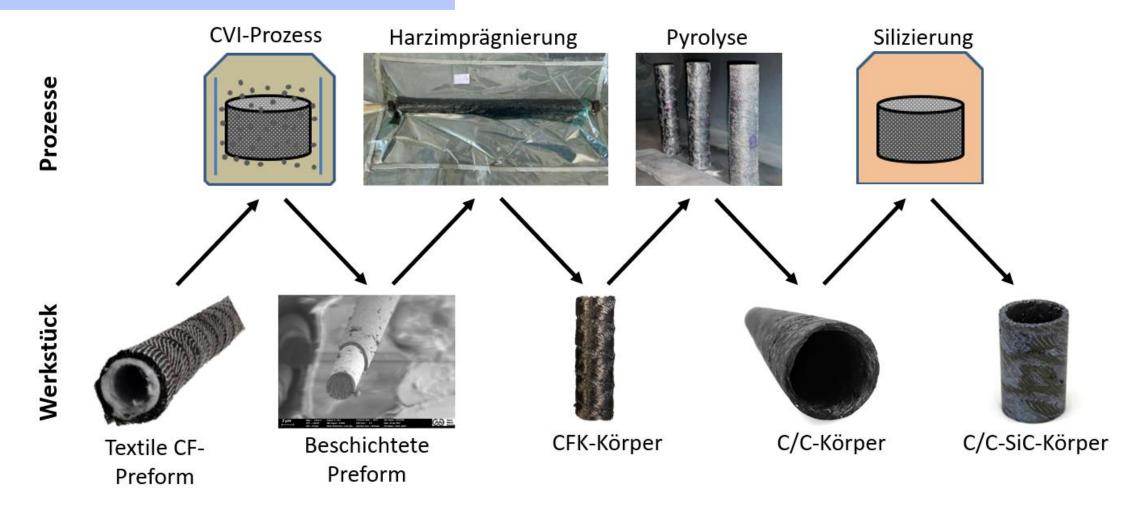
zylindrisch

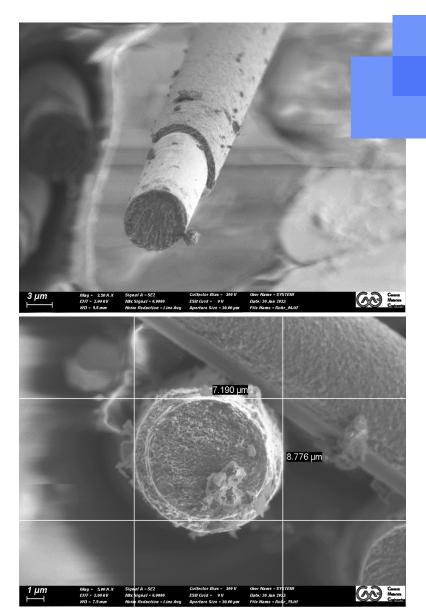
Oben: NCF auf konischem Dorn vernadelt

unten: NCF auf zylindrischen Dorn vernadelt, Foto: ifm

Optimierung der Preformen


- Materialkombinationen aus NCF und PES-Vlies:
 - Puffermaterial
 - gleicht Faltenbildung aus
- Gleichzeitig in Maschine einlaufen
 - Siliziuminseln
- Dünnerer PES-Vliesstoff
 - Erhöht Dichte und FVG
 - Wanddicke unter 1 mm
- Parallel einlaufen lassen:
 - Kern/Mantel-Struktur
- Einsatz kleinere Abzugspatrone (10 mm),
 110 mm breites NCF-Band
 - Anzahl Überlappungen steigt
 - Wanddicke steigt





Oben: Schneckenstruktur, unten: Kern/Mantel-Struktur, Foto: ifm

Prozessroute für C/C-SiC

REM-Bilder der PyC-Beschichtung, Foto: CME Bayreuth

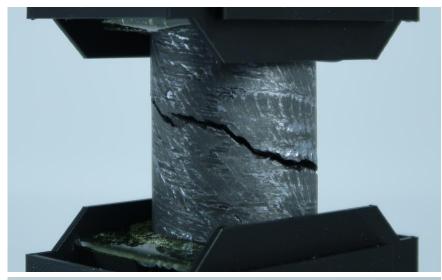
Beschichtung der Carbonfasern

- Schutz der Fasern gegen Beschädigung während
 Pyrolyse und Silizierung
- Verstärkung der Faser/Matrix-Haftung während der Harzinfiltration
- Beschichtung mittels CVI mit einer PyC-Schicht (pyrolysiertes Carbon)
 - Unterschiedliche Schichtdicken:600 nm und 800 nm

Bewertung der Infiltration und Prozessierung

- Infiltration konnte für rundvernadelte C/C-Preformen optimiert werden
 - Strukturen relativ homogen
- Die C/C-Preformen noch nicht optimal bezogen auf die Porenstruktur, aber Infiltration über Kapillarkräfte funktionierte bis zu einer Saughöhe von 200 mm
- Die Berechnung der notwendigen Si-Menge gilt es noch zu optimieren
 - Um übermäßigen Faserangriff zu eliminieren und überschüssiges Si zu vermeiden
- Selbst ein Rohr mit Länge von 750 mm infiltrierbar
 - Infiltrationsrichtung 90° zur Rohrlänge
 - Mikroporosität im Gegensatz zu gewickelten
 Geweberohren gut genug, um auch "quer" zu infiltrieren

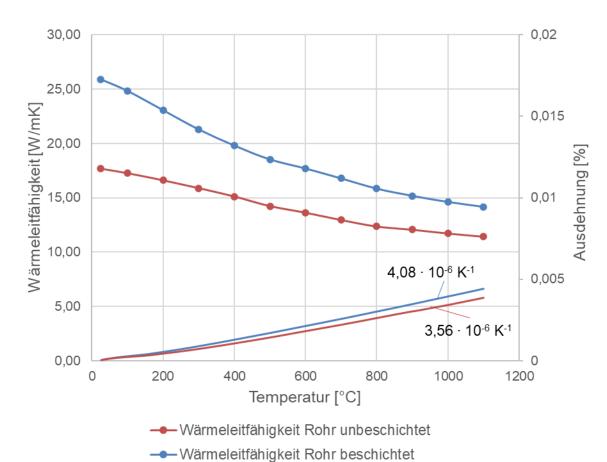
C/C-SiC-Rohr, Foto: ECM


Charakterisierung – CT-Aufnahmen

		Ohne Beschichtung	Beschichtete C/C-SiC Struktur
			35 % Fasern
			 50 % Matrix
Position	: 75 mm		
	ge: 300 mm		

Zugprüfung – Herausforderungen

- Entwicklung einer 3D-gedruckten Form, um Rohre in Zugprüfmaschine einspannen zu können
- Ungleichmäßige Wanddicke der C/C-SiC-Rohrstrukturen nach Oberflächennachbehandlung
 - Unklar, ob Rohr an Dünnstelle zuerst versagt
- Gute Vorbereitung der Prüflinge essenziell, aber sehr schwierig
 - Wichtig, Beschädigungen während
 Prüfungsvorbereitung zu vermeiden
 - Planparalleles Einsetzen in Harz und Form, um Beschädigung während Einspannen zu vermeiden



Bruchbild der zuggeprüften C/C-SiC-Rohre in Prüfform, Foto: ifm

Thermische Charakterisierung

Ausdehnungskoeffizient Rohr beschichtetAusdehnungskoeffizient Rohr unbeschichtet

Institut für Materialwissenschaften | 36. Hofer Vliesstofftage | 08.11.2023

Vergleich der erreichten Ergebnisse

Bezeichnung	Zielwert	Erreichter Wert						
Zugfestigkeit axial	200 MPa (Flachproben)	50 MPa (Rohrproben)						
Wärmeausdehnung in axialer Richtung	2-2,5 x 10 ⁻⁶ K ⁻¹	3,5 - 4,0 x 10 ⁻⁶ K ⁻¹						
Wärmeleitfähigkeit	So hoch wie möglich	18 - 26						
Faservolumengehalt	< 50 %	Ca. 35 %						
Außendurchmesser	< 40 mm	40-45 mm						

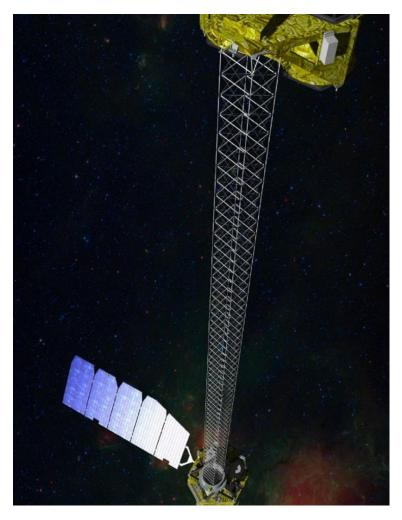
Ausblick

- Band- und Rohrstruktur optimieren
 - Neue Materiakombinationen: z.B. Roving + Vlies
- Zug-Prüfmethode von Rohren optimieren
- Alternative industrielle Anwendungen für rundvernadelte Preformen erschließen

Entwicklung von **Ru**ndvernadelten C/C-SiC-**Ro**hrstrukturen für die **Ra**umfahrt

Projektpartner:

Materialwissenschaften der Hochschule Hof



Förderträger: AiF Projekt GmbH

FuE Kooperationsprojekte des ZIM

Wir danken der AiF Projekt GmbH für die Förderung des Projektes "RuRoRa", als auch unseren Projektpartnern, der Engineered Ceramic Materials GmbH und dem Fraunhofer ISC, für die freundliche Zusammenarbeit.

Röntgenteleskop NuSTAR

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt:

Gwendolyn Wild

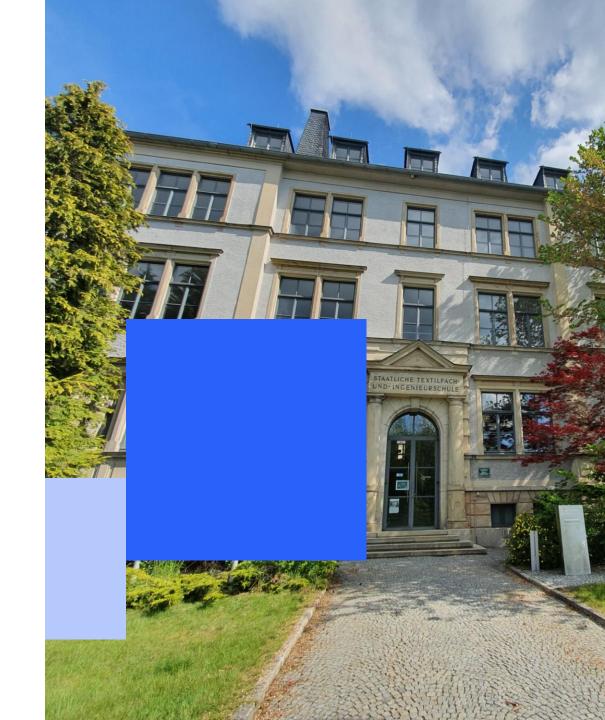
E-Mail: gwendolyn.wild.2@hof-university.de

Telefon: +49 9281 409-8407

Alfons-Goppel-Platz 1

95028 Hof

Phone +49 9281 409-3000


ifm@hof-university.de

www.hof-university.de/ifm

Kulmbacher Str. 76

95213 Münchberg

Phone +49 9281 409-8000

